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ABSTRACT 

If X, Y are compact countable metric spaces such that Y contains no subset 
homeomorphic to X, then for any isomorphism q5 of C(X) into C(Y), 
IL II II 11>--3 This result and some variants of it are established here, 
and prove a special case of a conjecture raised in ll]. 

1. Introductian 
I f  X is a locally compact Hausdorff  space, Co(X ) will denote the Banach space 

(with the usual sup. norm) of  continuous real valued functions defined on X 

which vanish at infinity, that is, for every e > 0 and f ~  Co(X) {x ~ X; [f(x) l => ~} 

is a compact  set. I f  x is compact  we write c (x )  instead of Co(X ). 

D. Amir [1] proved the following generalization of  the Banach Stone theorem: 

(1.1) I f  X, Y are non-homoeomorphic compact Hausdorff spaces, and (o is 

any isomorphism of C(X) onto C(Y), then II ¢ [I l[ ¢_2 II --> 2 
Since there are no known examples of  non-homeomorphic compact X, Y 

which admit " o n t o "  isomorphisms with 2 < II ¢ II I1 ¢_1 II < 3, D. Amir con- 

jectured that the number 2 may be replaced by 3 in this theorem. 

Using a different method of  proof  M. Cambern [3] showed that: 

(1.2) I f  X,  Y are non-homeomorphic locally compact Hausdorff spaces, and 

if ¢ is an isomorphism of Co(X ) onto Co(Y), then I] ¢II  II ¢-211 >-- 2 

Here the number 2 could not be improved upon, for Cambern [5] constructed 

an example in which 2 was exact. 

In the sequel we shall adopt  the following notations: Given a locally compact  
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space X, e > 0 a n d / ~  Co(X), K(f, e) will denote the compact set{x ~ Jr; [ f(x)l > e}. 

I f  S is some subset of X,  f / S  will denote the restriction o f f  to S. 

For any ordinal number 0~, the ~th derivative of X,  X (') is defined by transfinite 

induction: X c°) = X,  X (1) is the set of  non-isolated points of  X ,  and 

f (X(~))m; ~ = 3 + 1 

X~) = ] ["] X ̀ p)" otherwise. 

If  ~,fl are ordinals [e, fl] (respectively [e, fl)) will denote the set of  all ordinals 

~. such that c~ _< 2 < fl (respectively c~ __< 2 < fl). ] S ] will denote the cardinality 

of a set S, and S its closure (if S is a subset of  a topological space). The empty 

set is denoted by q~. 

§2 is devoted to the proof of our main theorem The idea of its proof orig- 

inates from [4]. In §3 we bring some applications and examples. All the 

results here are easily seen to apply for complex function spaces as well. 

2. The Main Theorem 

(2.1) THEOREM. Let X and Y be locally compact Hausdorff spaces and let 

qS:Co(X) i,to:~ Co(Y) be an isomorphism. I f  there is an ordinal ~ such that 

[ X~=' [ > [ Y':) I ' then 11 4) tl I[ d?-i Ii >= 3. 
For the proof of Theorem (2.1) we need the following lemma: 

(2.2) LEMMA. Let X and Y be locally compact Hausdorff spaces, and let 

qS: Co(X) into) Co(Y) be a norm increasing linear map such that ]1 4> ]1 < 3. 

Set e = (3(1-t/)  - [I q5 1[)/2, where 0 < tl < 1 and 3(1 - t/) > l[ ~b [l" Then: 

(2.2.1) I f  f,  g,h~Co(X) satisfy the conditions: 

(i) [hi----[fl =< [gl =< 1, 
(ii) gh >= O, g f  > 0, 

(iii) II h [I > 1 -  t/. 

Then, K(4f ,  5) ~_ K(cb(g + 2h), 3(1-ti))  ¢ O. 

(2.2.2) I f  for g, heCo(X) and some ordinal fl we have that: 

[h I =< lg I =< 1, hg >-- 0 and l[h/X (t~)[[> 1 - , .  Then: 

(*) OY K(c~f,e) (5 Y(o) ¢ @, where the intersection is taken over all f ~Co(X ) 

such that [h i<  If[ < [gl and fg  > 0 

(2.2.3) l f  f e Co(X) and for some ordinat fl, llf/x ,,ll = [lfll then II ~7/Y'~'II 

>= . l l f l l .  
PROOF. (2.2.1): I f  f, g h~Co(X) satisfy conditions (i)-(iii), then obviously 
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][g + 2hi] > 3 ( l - t / ) ,  hence I]~(g + 2h)I] => ][g + 2hll > 3 ( l - q ) ,  
K(q~(g + 2h), 3(1-r/))  is not empty. 

Observe next that IIg + 2 h -  2f  II --< 1. We have therefore, if 

Yo ~K(c~(g + 2h), 3(1-t /))  

[I (o [[ > I[ c~(g + 2h - 2f) ][ >= [ ~b(g + 2h) (Y0) - 2(q~f) (Yo)[ 

>__ [ qS(g + 2h)(yo)l - 2[ qSf(yo) I >= 3(1-r/)  - 2[~bf(yo)[, 

hence, 
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so that 

[ ~f(Yo)I >= 3(1-~) /2-[[  ~ [I/2 = ~. 

(2.2.2): We prove this by transfinite induction on ft. For fl = 0, this is a con- 

sequence of  (2.2.1). Suppose (2.2.2) is true for all fi < ]3, and we prove it for ft. 

There are two cases: (i) fl is a limit ordinal, (ii) fi = ? + 1. 

In (i), by the induction hypothesis N f K(¢f,e)c~ Y@ # ~ for all 5 < fi, 

hence by compactness [")fK(4)f,~) ~ Y(P) = f"]fK(~f,~) C5 ("]~<~Y(~) # ~. 

In (ii), in order to prove (*) it is sufficient to show that ~'] yK(4)f,e)n Y(r) 
is an infinite set. Let x ~ X  (a) be such that {h(x)[ > 1 - ~ .  There is then an 

infinite set {x,}i~=l of  distinct relatively isolated points of  X (r), such that 

[h(xi)[ > 1 - t/for all i. By the Urysohn lemma we can construct a set {h,; i=  1, 2,... } 

c Co(X) such that 0 _< hi -< 1, hi(xi) = 1 and hihj = 0 for i ¢ j .  

Denote, 

A = c3 {K(~b/,e); f~Co(X) ,  {h{ < l/[  < Ig], fg > 0}, 

A, = ~ {K(q~f,e); f e C o ( X ) ,  [hih I < Ifl --- Igi, fg  > 0}, 

i =  1,2, .- . .  We have for all i, 

(1) Ai c A (obvious). 

(2) A~ C3 Y(~) # ~ (by the induction hypothesis). 

(3) The intersection of any n ( >  II ~ II/~) sets of  {A,; i = 1,2,.. .} is empty. 

For if y e A~.=a A,~, where {i~, i2, ." ,  i,} is some set of distinct integers, then 

letting H = ]~)=x [sign(6(h,jh)(y)]h,jh, we have ]l n 11 __< 1, but 

[1+11 = (+g)(y)= ~, [+(h,,h)(y) I >__ n~> [I q~ [[, 
j = l  

which is a contradiction. 
From (1)-(3) it follows immediately that A c3 Y(~) is an infinite set, and the 

proof  is concluded. 

(2.2.3): This is a direct application of (2.2.2). 
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PROOf OF THEOREM (2.1). Assume first that Y(~) is a finite set of  m points. 

I f  there is an " in to"  isomorphism q5 such that [1 q~ II lI ~_1 II < 3, without loss 

of  generality we may suppose that I[ ~ - '  II = I and then let e , r /be as in Lemma 

(2.2). Choose any fixed subset X o = {x~,xz,...,xn} ~_ X (~) where n > m.  Con- 

struct hj~Co(X) j = 1,2, . . . ,n,  such that 0 < hj < 1, h/xj) = 1 and hihj = 0 

if i # j .  Define the operator L: C(Xo) ~ Co(X) by 

(Lf) (x) = ~, hj(x)f(xj) (x ~ X ,  f ~  C(Xo) ) . 
j = l  

Clearly II Lf l l  = I l f l l ,  so that if R: Co(Y)-~ c ( r  C')) is the natural restriction 

operator, (2.2.3)implies ~hat IIR~Lfll >= ~llfll if f~C(Xo). Therefore, R~L is 

an isomorphism mapping the n-dimensional space C(Xo) into the m-dimensional 
space C(Y(')), which is impossible since n > m. 

I f  Y(~) is an infinite set, let Z = Y u {~} be the one point compactification 

of  Y. Co(Y) is equivalent to the subspace of all functions of C(Z) which vanish 

at oo. Obviously, Y(~) _~ Z (~) _~ Y(~)w{oo}, so that IZ(~)l =[Y'~)I <lx(~ ' l  • 

i f  ~b:Co(X) i,to > Co(Y ) is such that II ~ II II ~-~ II <3, again suppose that 

I1~-~11 = 1 and let e , r /be  as in Lemma (2.2). Consider q~ to be an isomorphism 

of  Co(X ) into C(Z), and define the map a: X ~ 2 z by a(x) = n {K((ff e) ; fe  F(x)}, 

where F(x) contains all the func t ionsfe  Co(X) for which 0 < f < 1, and f (x )  = 1 

(a similar map tr was introduced in [1]). We see first that 

(2.1.1) I f  n > II~ll/~, and xl, xz , . . . ,x ,  are distinct points of  X ,  then 

For  if y~nT=, ~(x,), let {hi; i = 1,2, . . . ,n} c Co(X) be such that 

h, sF(x 3, h,hj = 0 if i ¢ j .  Then, since I~h,(y) l _>- e, upon letting 

H = ~7=~(sign(~h3(y))h,, we obtain that IIHII = 1, hence 

II~ll-> (~H)(y)= ~ Iq~h/(y)[ >_- ne> II~ll, 
i = l  

which is a contradiction. 

(2.1.2) I f  x E X  (~), then a(x) O Z  (~) # ~ .  

For  suppose that a(Xo) n Z (~) = • for some Xo ~ X (~). There is, due to the 

compactness of  Z ,  a finite empty intersection: Z t~) (")~=~ K(~bf, e) = qb, with 

f~ ~ F(xo). Put g(t) = max{f~(t); i = 1,2, .-., n}, and h(t) = min{f~(t); i = 1, 2,...,n}. 

Since 0 < h < f~ < g < 1 and h(xo) = 1, it follows from Lemma (2.2) that 

n~=  ~ K(~f~,~)n Y~) # ~ ,  which is a contradiction. 
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Now, on applying (2.1.1) and (2.1.2) the set (..Jx~xc-~[o(x)nZ C')] should 

contain at least ]X(~)[ dements, but being a subset of  Z (~), this is impossible 

since ]Z (=)] < iX(=)[. 

REMARK. M. Cambern [51 constructed a simple example where [X (') [ = [ Y(')] 

= 1, X is compact, Ylocally compact, and an isomorphism ~b: C(X) onto> Co(Y) 

such that ][ q5 ][ II II = 2 Thus we cannot replace in Theorem (2.1) the as- 

sumption "[ X (') [ > [ Y(')]" by the weaker assumption "X  not homeomorphic 

to Y",  even when q~ is an onto isomorphism. 

3. Applications and Examples. As first application we prove 

(3.1) THEOREM. Let X, Y be compact countable metric spaces such that Y 

contains no subset homeomorphic to X .  Then for any isomorphism 

e,:c(x)-,coo, II I[ -lll >= 3. 

PROOF: According to [6], every compact countable metric space Z is homeo- 

morphic to some interval of  ordinals [1, co =. n I with the order topology, where co 

is the first infinite ordinal, 1 < ~ < a h , where co 1 is the first uncountable ordinal, 

and 1 < n < c o .  Conversely, if 1 < n < c o  and 1 < a < c o l ,  [1,(o ~.n I is a 

countable compact metric space. 

Suppose now that X = [1,m=.n] and Y =  [ 1 , J . m  1. The condition im- 

posed on X means that either ~ > fl, or e= f l  and n > m. In either case, yta), 

which consists of  exactly m points, has a smaller cardinality than X ~p), and 

the result follows from Theorem (2.1). 

(3.1.1.) EXAMPLE. The number 3 is attained e.g. when X =  [1, co . 2], Y=[1,co] 
and ~b: C(X) onto> C(Y) is defined by: 

(q~f)(1) = f(t_o) - f (o~ .  2) 

(q~f)(Zm) = f ( m ) -  ½[f(c9)- f (o~.2) ] ,  a~ > m > 1 

(q~f)(2m + 1) = f((o + m) + ½If(a0 - f ( ( o . 2 ) ] ,  co > m > 1 

(~bf) (o0 = ½f((9) + ½f(~o. 2). 

It is easily verified that [] ~ ][ = 2, I[ ~_i  ]1 = 3/2. 

(3.1.2) EXAMVLE. For every isomorphism ~ mapping c(=C([1,o~])) into 

co ( = C0(El,co))), [I ¢ [] ]l q~Ta II > 3. This result which is a simple consequence 

of  Theorem (2.1) was obtained for onto isomorphisms in [41. Here the number 3 

is again exact, and is obtained for the isomorphism ~ defined by: 
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(q~f)(1) = 2f(¢o) 

(~ f )  (n + 1) = f(n) -f(~o), o9 > n >= 1. 

Theorem (3.1) is obviously not true when X and Y are uncountable compact 

metric spaces, for it is then well known that C(Y) is a universal Banach space 

i.e. every separable Banach space is isometrically embeddable in C(Y). However, 

it may well be then that for "on to"  isomorphisms, H ¢[I I[ q~_l H > 3 always. 

This is a special case of  the Amir's conjecture, and its special interest lies in the 

fact that C(X) and C(Y) are isomorphic whenever X and Y are uncountable 

metric spaces ([7], I-8]). Complete characterization of  the isomorphic types of  

C([1, co ~ . n]) spaces, 1 =< a < co 1 , 1 < n < 09, is given in [2]. 

Recall that a subset S ¢ @ of a topological space X is called perfect if 
S (1) = S.  It is obvious and well known that PX = ('],>=IX (~) is the maximal 
perfect subset of  a space X,  and is called the perfect kernel of  X.  

(3.2) L~MMA. Let X and Y be locally compact Hausdorff spaces and let 

q~: Co(X) °"'°> Co(Y ) be an isomorphism such that II¢ II I1 ¢_1 l[ < 3. Then 

there is an isomorphism [p: Co(Y .., py )  i,to > Co(X ,.~ PX) such that 

11 11 I1 '11 II II II ¢1  II. 
PROOF. Let L: Co(Y "~ PY) --* Co(Y) be the isometry (into) defined by 

f(Y); Y ~ Y ,., p Y  

(Lf)(y) = O; y e P f  

( f e  Co(Y '~ PY)). Without loss of  generality assume that [I qS-1 [I = 1. 

I f  0 ¢ f e  Co(Y ,., PY),  let g = qb-lLf/][ dp _1LfH. We have that I1 g II = 1, 

but II g/PX [I < 1 (otherwise by (2.2.3) [I ~°g[ Y(~) [l =>e for every ordinal a,  that is 

K(¢g,e) ~ Y(~) ¢ @, and by compactness K(¢g,e) n P Y  ¢ @, which is clearly 

impossible). Therefore if R: Co(X)~  Co(-X " PX) is the natural restriction 

operator, then II Rg[I = 1, that is [I R~-ILfH = l[ q~-lLfH, but 

[I ¢[I - t  II f II =< 11 ¢ - l L f  11 =< II f 1[, 

whence letting ~ = R e - t L ,  the statement in the lemma now becomes obvious. 

(3.3) COROLLARY. Let X, Y, (o be as in Lemma (3.2). Then for every ordinal ~, 

I(Y ~ py)(') [ < I ( X -  I 
PROOF. Consider the isomorphism ~ of  Lemma (3.2) and apply Theorem (2.1). 
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I t  is easy to construct  examples o f  spaces with non empty  perfect kernels where 

3 is exact, e.g. 

(3.4) EXAMPLE. X = [-0, 1"], Y = ['0, 1) V){2}. Define ~b: C(X)  onto> Co(Y) by 

(qSf)(2) = 2f(1) 

(qbf)(x)  = f ( x ) - - f ( l ) ,  0 < x < l .  

Clearly II ~ 11 = 2, [l ~_1 II = ~. Also, it follows f rom Corol lary (3.3) that  for 

every isomorphism ~ of C(X) onto Co(Y), II ~' 11 II ~'-1 II ->- 3. 
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