ON THE DISTANCE COEFFICIENT BETWEEN ISOMORPHIC FUNCTION SPACES*

BY

Y. GORDON

ABSTRACT

If X, Y are compact countable metric spaces such that Y contains no subset homeomorphic to X, then for any isomorphism ϕ of C(X) into C(Y), $\| \phi \| \| \| \phi^{-1} \| \ge 3$. This result and some variants of it are established here, and prove a special case of a conjecture raised in [1].

1. Introduction

If X is a locally compact Hausdorff space, $C_0(X)$ will denote the Banach space (with the usual sup. norm) of continuous real valued functions defined on X which vanish at infinity, that is, for every $\varepsilon > 0$ and $f \in C_0(X)$ $\{x \in X; |f(x)| \ge \varepsilon\}$ is a compact set. If X is compact we write C(X) instead of $C_0(X)$.

D. Amir [1] proved the following generalization of the Banach Stone theorem:

(1.1) If X, Y are non-homoeomorphic compact Hausdorff spaces, and ϕ is any isomorphism of C(X) onto C(Y), then $\| \phi \| \| \phi^{-1} \| \ge 2$.

Since there are no known examples of non-homeomorphic compact X, Y which admit "onto" isomorphisms with $2 \leq || \phi || || \phi^{-1} || < 3$, D. Amir conjectured that the number 2 may be replaced by 3 in this theorem.

Using a different method of proof M. Cambern [3] showed that:

(1.2) If X, Y are non-homeomorphic locally compact Hausdorff spaces, and if ϕ is an isomorphism of $C_0(X)$ onto $C_0(Y)$, then $\|\phi\| \|\phi^{-1}\| \ge 2$.

Here the number 2 could not be improved upon, for Cambern [5] constructed an example in which 2 was exact.

In the sequel we shall adopt the following notations: Given a locally compact

Received March 27, 1970.

^{*} This is a part of the author's Ph.D. Thesis prepared at the Hebrew University of Jerusalem, under the supervision of Prof. J. Lindenstrauss. I wish to thank Prof. Lindenstrauss and Prof. A. Dvoretzky for their guidance and the interest they showed in this work.

space $X, \varepsilon > 0$ and $f \in C_0(X)$, $K(f, \varepsilon)$ will denote the compact set $\{x \in X; |f(x)| \ge \varepsilon\}$. If S is some subset of X, f/S will denote the restriction of f to S.

For any ordinal number α , the α th derivative of X, $X^{(\alpha)}$ is defined by transfinite induction: $X^{(0)} = X$, $X^{(1)}$ is the set of non-isolated points of X, and

$$X^{(\alpha)} = \begin{cases} (X^{(\beta)})^{(1)}; & \alpha = \beta + 1 \\ \bigcap_{\beta < \alpha} X^{(\beta)}; & \text{otherwise.} \end{cases}$$

If α, β are ordinals $[\alpha, \beta]$ (respectively $[\alpha, \beta)$) will denote the set of all ordinals \succ such that $\alpha \leq \lambda \leq \beta$ (respectively $\alpha \leq \lambda < \beta$). |S| will denote the cardinality of a set S, and \overline{S} its closure (if S is a subset of a topological space). The empty set is denoted by Φ .

\$2 is devoted to the proof of our main theorem The idea of its proof originates from [4]. In \$3 we bring some applications and examples. All the results here are easily seen to apply for complex function spaces as well.

2. The Main Theorem

(2.1) THEOREM. Let X and Y be locally compact Hausdorff spaces and let $\phi: C_0(X) \xrightarrow{\text{into}} C_0(Y)$ be an isomorphism. If there is an ordinal α such that $|X^{(\alpha)}| > |Y^{(\alpha)}|$, then $||\phi|| ||\phi^{-1}|| \ge 3$.

For the proof of Theorem (2.1) we need the following lemma:

(2.2) LEMMA. Let X and Y be locally compact Hausdorff spaces, and let $\phi: C_0(X) \xrightarrow{\text{into}} C_0(Y)$ be a norm increasing linear map such that $|| \phi || < 3$. Set $\varepsilon = (3(1-\eta) - || \phi ||)/2$, where $0 < \eta < 1$ and $3(1-\eta) > || \phi ||$. Then:

(2.2.1) If $f, g, h \in C_0(X)$ satisfy the conditions:

- (i) $|h| \leq |f| \leq |g| \leq 1$,
- (ii) $gh \ge 0, gf \ge 0,$
- (iii) $||h|| > 1 \eta$.

Then, $K(\phi f, \varepsilon) \supseteq K(\phi(g+2h), 3(1-\eta)) \neq \Phi$.

(2.2.2) If for $g, h \in C_0(X)$ and some ordinal β we have that:

 $|h| \leq |g| \leq 1$, $hg \geq 0$ and $||h/X|^{(\beta)}|| > 1 - \eta$. Then:

(*) $\bigcap_{f} K(\phi f, \varepsilon) \cap Y^{(\beta)} \neq \Phi$, where the intersection is taken over all $f \in C_0(X)$ such that $|h| \leq |f| \leq |g|$ and $fg \geq 0$.

(2.2.3) If $f \in C_0(X)$ and for some ordinal β , $||f/X^{(\beta)}|| = ||f||$ then $||\phi f/Y^{(\beta)}|| \ge \varepsilon ||f||$.

PROOF. (2.2.1): If f, g $h \in C_0(X)$ satisfy conditions (i)-(iii), then obviously

 $||g+2h|| > 3(1-\eta)$, hence $||\phi(g+2h)|| \ge ||g+2h|| > 3(1-\eta)$, so that $K(\phi(g+2h), 3(1-\eta))$ is not empty.

Observe next that $||g + 2h - 2f|| \le 1$. We have therefore, if

$$y_{0} \in K(\phi(g+2h), 3(1-\eta))$$

$$\|\phi\| \ge \|\phi(g+2h-2f)\| \ge |\phi(g+2h)(y_{0}) - 2(\phi f)(y_{0})|$$

$$\ge |\phi(g+2h)(y_{0})| - 2|\phi f(y_{0})| \ge 3(1-\eta) - 2|\phi f(y_{0})|,$$

hence,

$$\left|\phi f(y_0)\right| \ge 3(1-\eta)/2 - \|\phi\|/2 = \varepsilon$$

(2.2.2): We prove this by transfinite induction on β . For $\beta = 0$, this is a consequence of (2.2.1). Suppose (2.2.2) is true for all $\delta < \beta$, and we prove it for β . There are two cases: (i) β is a limit ordinal, (ii) $\beta = \gamma + 1$.

In (i), by the induction hypothesis $\bigcap_f K(\phi f, \varepsilon) \cap Y^{(\delta)} \neq \Phi$ for all $\delta < \beta$, hence by compactness $\bigcap_f K(\phi f, \varepsilon) \cap Y^{(\beta)} = \bigcap_f K(\phi f, \varepsilon) \cap \bigcap_{\delta < \beta} Y^{(\delta)} \neq \Phi$.

In (ii), in order to prove (*) it is sufficient to show that $\bigcap_{f} K(\phi f, \varepsilon) \cap Y^{(\gamma)}$ is an infinite set. Let $x \in X^{(\beta)}$ be such that $|h(x)| > 1 - \eta$. There is then an infinite set $\{x_i\}_{i=1}^{\infty}$ of distinct relatively isolated points of $X^{(\gamma)}$, such that $|h(x_i)| > 1 - \eta$ for all *i*. By the Urysohn lemma we can construct a set $\{h_i; i=1, 2, \cdots\}$ $\subset C_0(X)$ such that $0 \leq h_i \leq 1$, $h_i(x_i) = 1$ and $h_i h_j = 0$ for $i \neq j$.

Denote,

$$A = \cap \{K(\phi f, \varepsilon); f \in C_0(X), |h| \leq |f| \leq |g|, fg \geq 0\},\$$

$$A_i = \cap \{K(\phi f, \varepsilon); f \in C_0(X), |h_ih| \leq |f| \leq |g|, fg \geq 0\},\$$

 $i = 1, 2, \cdots$. We have for all i,

(1) $A_i \subset A$ (obvious).

(2) $A_i \cap Y^{(\gamma)} \neq \Phi$ (by the induction hypothesis).

(3) The intersection of any $n \ (> \|\phi\|/\varepsilon)$ sets of $\{A_i; i = 1, 2, \cdots\}$ is empty.

For if $y \in \bigcap_{j=1}^{n} A_{i_j}$, where $\{i_1, i_2, \dots, i_n\}$ is some set of distinct integers, then letting $H = \sum_{j=1}^{n} [\operatorname{sign}(\phi(h_{i_j}h)(y)]h_{i_j}h)$, we have $||H|| \leq 1$, but

$$\|\phi\| \ge (\phi H)(y) = \sum_{j=1}^{n} |\phi(h_{i_j}h)(y)| \ge n\varepsilon > \|\phi\|,$$

which is a contradiction.

From (1)-(3) it follows immediately that $A \cap Y^{(\gamma)}$ is an infinite set, and the proof is concluded.

(2.2.3): This is a direct application of (2.2.2).

393

Y. GORDON

PROOF OF THEOREM (2.1). Assume first that $Y^{(\alpha)}$ is a finite set of *m* points. If there is an "into" isomorphism ϕ such that $\|\phi\| \|\phi^{-1}\| < 3$, without loss of generality we may suppose that $\|\phi^{-1}\| = 1$ and then let ε, η be as in Lemma (2.2). Choose any fixed subset $X_0 = \{x_1, x_2, \dots, x_n\} \subseteq X^{(\alpha)}$ where n > m. Construct $h_j \in C_0(X)$ $j = 1, 2, \dots, n$, such that $0 \le h_j \le 1$, $h_j(x_j) = 1$ and $h_ih_j = 0$ if $i \ne j$. Define the operator $L: C(X_0) \to C_0(X)$ by

$$(Lf)(x) = \sum_{j=1}^{n} h_j(x) f(x_j) \qquad (x \in X, f \in C(X_0)).$$

Clearly || Lf || = || f ||, so that if $R: C_0(Y) \to C(Y^{(\alpha)})$ is the natural restriction operator, (2.2.3) implies that $|| R\phi Lf || \ge \varepsilon || f ||$ if $f \in C(X_0)$. Therefore, $R\phi L$ is an isomorphism mapping the *n*-dimensional space $C(X_0)$ into the *m*-dimensional space $C(Y^{(\alpha)})$, which is impossible since n > m.

If $Y^{(\alpha)}$ is an infinite set, let $Z = Y \cup \{\infty\}$ be the one point compactification of Y. $C_0(Y)$ is equivalent to the subspace of all functions of C(Z) which vanish at ∞ . Obviously, $Y^{(\alpha)} \subseteq Z^{(\alpha)} \subseteq Y^{(\alpha)} \cup \{\infty\}$, so that $|Z^{(\alpha)}| = |Y^{(\alpha)}| < |X^{(\alpha)}|$.

If $\phi: C_0(X) \xrightarrow{into} C_0(Y)$ is such that $\| \phi \| \| \phi^{-1} \| < 3$, again suppose that $\| \phi^{-1} \| = 1$ and let ε, η be as in Lemma (2.2). Consider ϕ to be an isomorphism of $C_0(X)$ into C(Z), and define the map $\sigma: X \to 2^Z$ by $\sigma(x) = \cap \{K(\phi f \varepsilon); f \in F(x)\}$, where F(x) contains all the functions $f \in C_0(X)$ for which $0 \le f \le 1$, and f(x) = 1 (a similar map σ was introduced in [1]). We see first that

(2.1.1) If $n > ||\phi|| / \varepsilon$, and x_1, x_2, \dots, x_n are distinct points of X, then $\bigcap_{i=1}^n \sigma(x_i) = \Phi$.

For if $y \in \bigcap_{i=1}^{n} \sigma(x_i)$, let $\{h_i; i = 1, 2, \dots, n\} \subset C_0(X)$ be such that $h_i \in F(x_i)$, $h_i h_j = 0$ if $i \neq j$. Then, since $|\phi h_i(y)| \ge \varepsilon$, upon letting $H = \sum_{i=1}^{n} (\operatorname{sign}(\phi h_i)(y))h_i$, we obtain that ||H|| = 1, hence

$$\|\phi\| \ge (\phi H)(y) = \sum_{i=1}^{n} |\phi h_i(y)| \ge n\varepsilon > \|\phi\|,$$

which is a contradiction.

(2.1.2) If $x \in X^{(\alpha)}$, then $\sigma(x) \cap Z^{(\alpha)} \neq \Phi$.

For suppose that $\sigma(x_0) \cap Z^{(\alpha)} = \Phi$ for some $x_0 \in X^{(\alpha)}$. There is, due to the compactness of Z, a finite empty intersection: $Z^{(\alpha)} \bigcap_{i=1}^{n} K(\phi f_i, \varepsilon) = \Phi$, with $f_i \in F(x_0)$. Put $g(t) = \max\{f_i(t); i = 1, 2, \dots, n\}$, and $h(t) = \min\{f_i(t); i = 1, 2, \dots, n\}$. Since $0 \le h \le f_i \le g \le 1$ and $h(x_0) = 1$, it follows from Lemma (2.2) that $\bigcap_{i=1}^{n} K(\phi f_i, \varepsilon) \cap Y^{(\alpha)} \ne \Phi$, which is a contradiction.

Now, on applying (2.1.1) and (2.1.2) the set $\bigcup_{x \in X^{(\alpha)}} [\sigma(x) \cap Z^{(\alpha)}]$ should contain at least $|X^{(\alpha)}|$ elements, but being a subset of $Z^{(\alpha)}$, this is impossible since $|Z^{(\alpha)}| < |X^{(\alpha)}|$.

REMARK. M. Cambern [5] constructed a simple example where $|X^{(1)}| = |Y^{(1)}| = 1$, X is compact, Y locally compact, and an isomorphism $\phi: C(X) \xrightarrow{\text{onto}} C_0(Y)$ such that $\|\phi\| \|\phi^{-1}\| = 2$. Thus we cannot replace in Theorem (2.1) the assumption " $|X^{(\alpha)}| > |Y^{(\alpha)}|$ " by the weaker assumption "X not homeomorphic to Y", even when ϕ is an onto isomorphism.

3. Applications and Examples. As first application we prove

(3.1) THEOREM. Let X, Y be compact countable metric spaces such that Y contains no subset homeomorphic to X. Then for any isomorphism $\phi: C(X) \to C(Y), \| \phi \| \| \phi^{-1} \| \ge 3$.

PROOF: According to [6], every compact countable metric space Z is homeomorphic to some interval of ordinals $[1, \omega^{\alpha}. n]$ with the order topology, where ω is the first infinite ordinal, $1 \leq \alpha < \omega_1$, where ω_1 is the first uncountable ordinal, and $1 \leq n < \omega$. Conversely, if $1 \leq n < \omega$ and $1 \leq \alpha < \omega_1$, $[1, \omega^{\alpha}. n]$ is a countable compact metric space.

Suppose now that $X = [1, \omega^{\alpha} \cdot n]$ and $Y = [1, \omega^{\beta} \cdot m]$. The condition imposed on X means that either $\alpha > \beta$, or $\alpha = \beta$ and n > m. In either case, $Y^{(\beta)}$, which consists of exactly m points, has a smaller cardinality than $X^{(\beta)}$, and the result follows from Theorem (2.1).

(3.1.1.) EXAMPLE. The number 3 is attained e.g. when $X = [1, \omega, 2]$, $Y = [1, \omega]$ and $\phi: C(X) \xrightarrow{\text{onto}} C(Y)$ is defined by:

$$\begin{aligned} (\phi f)(1) &= f(\omega) - f(\omega.2) \\ (\phi f)(2m) &= f(m) - \frac{1}{2} [f(\omega) - f(\omega.2)], \quad \omega > m \ge 1 \\ (\phi f)(2m+1) &= f(\omega+m) + \frac{1}{2} [f(\omega) - f(\omega.2)], \quad \omega > m \ge 1 \\ (\phi f)(\omega) &= \frac{1}{2} f(\omega) + \frac{1}{2} f(\omega.2). \end{aligned}$$

It is easily verified that $\|\phi\| = 2$, $\|\phi^{-1}\| = 3/2$.

(3.1.2) EXAMPLE. For every isomorphism ϕ mapping $c(=C([1, \omega]))$ into $c_0 (= C_0([1, \omega])), \| \phi \| \| \phi^{-1} \| \ge 3$. This result which is a simple consequence of Theorem (2.1) was obtained for onto isomorphisms in [4]. Here the number 3 is again exact, and is obtained for the isomorphism ϕ defined by:

Y. GORDON

$$\begin{aligned} (\phi f)(1) &= 2f(\omega) \\ (\phi f)(n+1) &= f(n) - f(\omega), \qquad \omega > n \ge 1. \end{aligned}$$

Theorem (3.1) is obviously not true when X and Y are uncountable compact metric spaces, for it is then well known that C(Y) is a universal Banach space i.e. every separable Banach space is isometrically embeddable in C(Y). However, it may well be then that for "onto" isomorphisms, $\|\phi\| \|\phi^{-1}\| \ge 3$ always. This is a special case of the Amir's conjecture, and its special interest lies in the fact that C(X) and C(Y) are isomorphic whenever X and Y are uncountable metric spaces ([7], [8]). Complete characterization of the isomorphic types of $C([1, \omega^{\alpha} \cdot n])$ spaces, $1 \le \alpha < \omega_1$, $1 \le n < \omega$, is given in [2].

Recall that a subset $S \neq \Phi$ of a topological space X is called perfect if $S^{(1)} = S$. It is obvious and well known that $PX = \bigcap_{\alpha \geq 1} X^{(\alpha)}$ is the maximal perfect subset of a space X, and is called the perfect kernel of X.

(3.2) LEMMA. Let X and Y be locally compact Hausdorff spaces and let $\phi: C_0(X) \xrightarrow{\text{onto}} C_0(Y)$ be an isomorphism such that $\|\phi\| \|\phi^{-1}\| < 3$. Then there is an isomorphism $\tilde{\phi}: C_0(Y \sim PY) \xrightarrow{\text{into}} C_0(\overline{X} \sim P\overline{X})$ such that $\|\tilde{\phi}\| \|\tilde{\phi}^{-1}\| \leq \|\phi\| \|\phi^{-1}\|$.

PROOF. Let $L: C_0(Y \sim PY) \rightarrow C_0(Y)$ be the isometry (into) defined by

$$(Lf)(y) = \begin{cases} f(y); & y \in Y \sim PY \\ 0; & y \in PY \end{cases}$$

 $(f \in C_0(Y \sim PY))$. Without loss of generality assume that $\|\phi^{-1}\| = 1$.

If $0 \neq f \in C_0(Y \sim PY)$, let $g = \phi^{-1}Lf/||\phi^{-1}Lf|||$. We have that ||g|| = 1, but ||g/PX|| < 1 (otherwise by (2.2.3) $||\phi g/Y^{(\alpha)}|| \ge \varepsilon$ for every ordinal α , that is $K(\phi g, \varepsilon) \cap Y^{(\alpha)} \neq \Phi$, and by compactness $K(\phi g, \varepsilon) \cap PY \neq \Phi$, which is clearly impossible). Therefore if $R: C_0(X) \to C_0(\overline{X \sim PX})$ is the natural restriction operator, then ||Rg|| = 1, that is $||R\phi^{-1}Lf|| = ||\phi^{-1}Lf||$, but

$$\|\phi\|^{-1}\|f\| \le \|\phi^{-1}Lf\| \le \|f\|,$$

whence letting $\tilde{\phi} = R\phi^{-1}L$, the statement in the lemma now becomes obvious.

(3.3) COROLLARY. Let X, Y, ϕ be as in Lemma (3.2). Then for every ordinal α ,

$$\left| (Y \sim PY)^{(\alpha)} \right| \leq \left| (X \sim PX)^{(\alpha)} \right|.$$

PROOF. Consider the isomorphism ϕ of Lemma (3.2) and apply Theorem (2.1).

Vol. 8, 1970

It is easy to construct examples of spaces with non empty perfect kernels where 3 is exact, e.g.

(3.4) EXAMPLE. $X = [0,1], Y = [0,1] \cup \{2\}$. Define $\phi: C(X) \xrightarrow{\text{onto}} C_0(Y)$ by $(\phi f)(2) = 2f(1)$ $(\phi f)(x) = f(x) - f(1), \quad 0 \le x < 1.$

Clearly $\|\phi\| = 2$, $\|\phi^{-1}\| = \frac{3}{2}$. Also, it follows from Corollary (3.3) that for every isomorphism ψ of C(X) onto $C_0(Y)$, $\|\psi\| \|\psi^{-1}\| \ge 3$.

REFERENCES

1. D. Amir, On isomorphisms of continuous function spaces, Israel J. Math. 3 (1965), 205-210.

2. C. Bessaga and A. Pełczyński, Spaces of continuous functions (IV), Studia Math. 19 (1960), 53-62.

3. M. Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967), 1062-1066.

4. M. Cambern, On mappings of sequence spaces, Studia Math 30 (1968), 73-77.

5. M. Cambern, Mappings of continuous function spaces, Notices Amer. Math. Soc. 16 (1969), 317.

6. S. Mazurkiewicz and W. Sierpinski, Contributions à la topologie des ensembles denombrables, Fund. Math, 1 (1920), 17-27.

7. A. A. Miljutin, Isomorphism of spaces of continuous functions on compacts of the power continuum, Teor. Funk. Funkcional. Analiz i Priložen. 2 (1966), 150-156 (Russian).

8. A. Pełczyński, Linear extensions, linear averagings and their application to linear topological classification of spaces of continuous functions, RozpraWy Matematyczne 58, (1968).

THE HEBREW UNIVERSITY OF JERUSALEM