ON THE DISTANCE COEFFICIENT BETWEEN
ISOMORPHIC FUNCTION SPACES*

BY
Y. GORDON

ABSTRACT

If X, Y are compact countable metric spaces such that Y contains no subset
homeomorphic to X, then for any isomorphism ¢ of C(X) into C(Y),
“ ¢ H ” ¢-1 H = 3. This result and some variants of it are established here,
and prove a special case of a conjecture raised in [1].

1. Introduction

If X is a locally compact Hausdorft space, Cy(X) will denote the Banach space
(with the usual sup. norm) of continuous real valued functions defined on X
which vanish at infinity, that is, for every ¢ > 0 and fe Co(X) {x € X;|f(x)| = ¢}
is a compact set. If X is compact we write C(X) instead of Cy(X).

D. Amir [1] proved the following generalization of the Banach Stone theorem:

(1.1) If X,Y are non-homoeomorphic compact Hausdorff spaces, and ¢ is

any isomorphism of C(X) onto C(Y), then | ¢ | | ¢~ | = 2.
Since there are no known examples of non-homeomorphic compact X,Y

which admit ““onto> isomorphisms with 2 < || ¢ || || ¢=* || <3, D. Amir con-
jectured that the number 2 may be replaced by 3 in this theorem.

Using a different method of proof M. Cambern [3] showed that:

(1.2) If X,Y are non-homeomorphic locally compact Hausdorff spaces, and
if ¢ is an isomorphism of Co(X) onto Co(Y), then | ¢ | | ¢~ = 2.

Here the number 2 could not be improved upon, for Cambern [5] constructed
an example in which 2 was exact.

In the sequel we shall adopt the following notations: Given a locally compact
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space X; ¢ > 0 and fe Co(X), K(f, &) will denote the compact set{x € X; [ I (x)| > ¢}
If S is some subset of X, f/S will denote the resiriction of f to S.

For any ordinal number o, the ath derivative of X, X® is defined by transfinite
induction: X = X, X" is the set of non-isolated points of X, and

@ {<X"”>‘”; x=p+1
X® =

ﬂ X®:  otherwise.
f<u

If o, B are ordinals [o, f] (respectively [a, §)) will denote the set of all ordinals
s-such that o £ 4 < f (respectively o < 1 < f§). | S I will denote the cardinality
of a set S, and Sits closure (if S is a subset of a topological space). The empty
set is denoted by P.

§2 is devoted to the proof of our main theorem The idea of its proof orig-
inates from [4]. In §3 we bring some applications and examples. All the
results here are easily seen to apply for complex function spaces as well.

2. The Main Theorem

(2.1) TueorREM. Let X and Y be locally compact Hausdorff spaces and let
¢: Co(X) nte s, Co(Y) be an isomorphism. If there is an ordinal o such that
| X > [Y®], then | & [ ¢~ 2 3.

For the proof of Theorem (2.1) we need the following lemma:

(2.2) LemMa. Let X and Y be locally compact Hausdorff spaces, and let
¢: Co(X) —225 Cy(Y) be a norm increasing linear map such that | ¢ <3.
Set e = (3(1—n) = || ¢ |)/2, where 0 <n<1 and 3(1—n)> | ¢ |. Then:

(2.2.1) If f,g,he Cy(X) satisfy the conditions:

W |k =|f]slel s,

(i) ghz0,8/20,

i) [r]>1—n.

Then, K(¢f,e) = K(¢(g + 2h), 3(1—mn) # ©.

(2.2.2) If for g, heCy(X) and some ordinal B we have that:

Ihl < |g[ <1, hg 20 and |h/X P|>1—n. Then:
™* () K@f,.an Y® £ ®, where the intersection is taken over all fe Cy(X)
such that Ihl < |f| < lg| and fg = 0.

(2.2.3) If fe Co(X) and for some ordinai B, | fIXP| = | f| then | ¢ £/YP|
2 e]7]-

Proor. (2.2.1): If f,g heCy(X) satisfy conditions (i)-(iii), then obviously
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lg+2r] >3(1—y), hence |¢(g+2m)| = |g+2h]>3(1-n), so that
K(d(g + 2h), 3(1—n)) is not empty.
Observe next that ||g + 2k —2f | < 1. We have therefore, if

Yo e K((g + 2h), 3(1—1)
I6] = [d(e+20—20)] 2 |$(g+ 2010 ~ A o)
> |¢(g+ 20| — 2| ¢fOo)| Z 30— — 2| df (o),

hence,
| of (o) | 2 3(t=m)2—| ¢ |12 = e.

(2.2.2): We prove this by transfinite induction on . For § = 0, this is a con-
sequence of (2.2.1). Suppose (2.2.2) is true for all < f, and we prove it for .
There are two cases: (i) f is a limit ordinal, (i) f =y + 1.

In (i), by the induction hypothesis ﬂ r K(¢f,e) N Y® % @ for all 6 <p,
hence by compactness {),K(¢£,6) N YP = (),K(¢f,6) N (557" # @.

In (ii), in order to prove (*) it is sufficient to show that ﬂ Kof,e) N YW
is an infinite set. Let x€ X be such that {h(x)l > 1—#. There is then an
infinite set {x;}{2, of distinct relatively isolated points of X, such that
lh(xi)[ > 1~ for all i. By the Urysohn lemma we can construct a set {h;; i=1,2,---}
< Co(X) such that 0 < h; = 1, hy(x;) = 1 and hh; = 0 for i # j.

Denote,

4 = N {K(@f.e); feCo(X), || S {f] =
A; = N {K(#f.e); feCo(X), Ihih) = | I
i=1,2,---. We have for all i,
(1) A; = 4 (obvious).
(2) A4,NYY £ ® (by the induction hypothesis).
(3) The intersection of any n (> || ¢ | /) sets of {4;; i = 1,2,---} is empty.
For if ye ﬂ'}=1 A, , where {iy,i,,---,i,} is some set of distinct integers, then
letting H = X7%_; [sign(d(h; h)(»)]h;,h, we have | H | £ 1, but

| 7220
g

e
<

18] 2 6D0O) = 2 600 2 ne> o]

which is a contradiction.
From (1)-(3) it follows immediately that A N Y™ is an infinite set, and the
proof is concluded.

(2.2.3): This is a direct application of (2.2.2).
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PROOF OF THEOREM (2.1). Assume first that Y® is a finite set of m points.
If there is an “‘into” isomorphism ¢ such that || [¢~'| <3, without loss
of generality we may suppose that | ¢~ | = 1 and then let ¢, be as in Lemma
(2.2). Choose any fixed subset X, = {x;,%,,--,x,} S X® where n>m. Con-
struct h;eCo(X) j = 1,2,-+,n, such that 0 < h; £ 1, hyx;) =1 and hh; =0
if i # j. Define the operator L:C(X,) = Cy(X) by

(INGW = Th@f)  (xeX, feC(Xo),

Clearly | Lf || = | f]. so that if R:Co(Y) = C(Y'®) is the natural restriction
operator, (2.2.3) implies :hat “ RoLSf “ = s“ f || if fe C(X,). Therefore, RPL is
an isomorphism mapping the n-dimensional space C(X,)) into the m-dimensional
space C(Y™), which is impossible since n > m.

If Y® is an infinite set, let Z = Y U {0} be the one point compactification
of Y. Co(Y) is equivalent to the subspace of all functions of C(Z) which vanish
at 0. Obviously, Y® < Z® < Y U{w}, so that |Z®)| =[Y(“)| <|x®].

If ¢:Co(X) -2 Co(Y) is such that | ¢ | | #='| <3, again suppose that
[|#~*| = 1 and Iet &, be as in Lemma (2.2). Consider ¢ to be an isomorphism
of Co(X)into C(Z), and define the map o: X — 2% by a(x) = N {K(¢f &);fe F(x)},
where F(x) contains all the functions fe Co(X) for which0 £ f < 1, and f(x) = 1
(a similar map ¢ was introduced in [1]). We see first that

211 If n>|¢|/e, and x;,%,,-,x, are distinct points of X, then
n';=1 o(x;) = @.

For if ye ﬂ',-'=1 o(x;)), let {h; i=1.2,-,n} cCyX) be such that
h,eF(x), hh; =0 if i#j. Then, since |¢h(y)|=¢e, upon Iletting
H = X7_,(sign(¢h;)(y))h;, we obtain that HH” =1, hence

[6] 2 @00 = 2 [9h0)| 2 ne> 4],
which is a contradiction.

(2.1.2) If xeX®, then o(x) NZ® # .

For suppose that o(xp) NZ® = @ for some x,€ X®. There is, due to the
compactness of Z, a finite empty intersection: Z® n’}=1K(¢j},8) = @, with
fie F(xo). Put g(t) = max{f(t);i = 1,2,---,n},and h(t) = min{fy();i =1,2,--,n}.
Since 0 h<f,£g <1 and h(xy) = 1, it follows from Lemma (2.2) that
(Vi-1K(¢f:,&) N Y® # @, which is a contradiction.
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Now, on applying (2.1.1) and (2.1.2) the set [ J,yw[o(x) NZ®] should
contain at least | X®| elements, but being a subset of Z®, this is impossible
since lZ(")‘ < ‘X(“)!.

REMARK. M. Cambern [5] constructed a simple example where I x® | = [ Yw ,
=1, X is compact, Y locally compact, and an isomorphism ¢: C(X) 225 Cy(Y)
such that | ¢| |¢-*| = 2. Thus we cannot replace in Theorem (2.1) the as-
sumption “IX(“)I > | Y(“’I” by the weaker assumption “X not homeomorphic

to Y, even when ¢ is an onto isomorphism.
3. Applications and Examples. As first application we prove

(3.1) TueorReM. Let X,Y be compact countable metric spaces such that Y
contains no subset homeomorphic to X. Then for any isomorphism

$:C0 > CD), | ¢ o] = 3.

ProoF: According to [6], every compact countable metric space Z is homeo-

morphic to some interval of ordinals [1, w®.n] with the order topology, where @
is the first infinite ordinal, 1 £ « < w,, where w, is the first uncountable ordinal,
and 1 £ n<w. Conversely, if 1 Sn<w and 1 2 a<wy, [l,0".n] is a
countable compact metric space.

Suppose now that X = [l,0*-n] and Y = [1,0’.m]. The condition im-
posed on X means that either « > 8, or a=f and n > m. In either case, Y
which consists of exactly m points, has a smaller cardinality than X®, and
the result follows from Theorem (2.1).

(3.1.1.) ExamprE. The number 3 is attained e.g. when X =[1,0.2], Y=[1,w]
and ¢:C(X) =223 C(Y) is defined by:
@NHA) = flo) - flw.2)
@f)2m) = f(m)—H flo) - f(0.D)], ow>m2=1
@H2m+1) = flo+m)+ 3 f(0) - f(«@.2)], ©o>m2=1
(@) (@) = 3f(0) + 1f(w.2).
It is easily verified that || ¢ | =2, |¢-*| = 3/2.
(3.1.2) ExampLE. For every isomorphism ¢ mapping c¢(=C([1,w])) into
co (= Co([1,0)), | #| | #=" || = 3. This result which is a simple consequence

of Theorem (2.1) was obtained for onto isomorphisms in [4]. Here the number 3
is again exact, and is obtained for the isomorphism ¢ defined by:
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(@)D = 2f(w)
(@)(n+1) = f(n) - f(w), w>nzl.

Theorem (3.1) is obviously not true when X and Y are uncountable compact
metric spaces, for it is then well known that C(Y) is a universal Banach space
i.e. every separable Banach space is isometrically embeddable in C(Y). However,
it may well be then that for ‘“‘onto’’ isomorphisms, qb“ H o1 “ = 3 always.
This is a special case of the Amir’s conjecture, and its special interest lies in the
fact that C(X) and C(Y) are isomorphic whenever X and Y are uncountable
metric spaces ([7], [8]). Complete characterization of the isomorphic types of
C([1,0%.n]) spaces, 1 La<w;,1 < n<w,is given in [2].

Recall that a subset S # @ of a topological space X is called perfect if

S = S, It is obvious and well known that PX = ﬂ,élX(“) is the maximal
perfect subset of a space X, and is called the perfect kernel of X.

(3.2) LemmA. Let X and Y be locally compact Hausdorff spaces and let
¢: Co(X) =225 Cy(Y) be an isomorphism such that H(I)H |[¢‘1” <3. Then
there is an isomorphism &:Cy(Y ~PY) 225 Cy(X ~ PX) such that

(el =0el o1
Proor. Let L:Cy(Y ~ PY) » Cy(Y) be the isometry (into) defined by

{f(y); yeY~PY
0; yePY

LNHY) =

(fe Co(Y ~ PY)). Without loss of generality assume that H p-1 " =1.

If 0 # feCo(Y ~ PY), let g = ¢~Lf/| ¢ ~*Lf||. We have that |g| =1,
but | g/PX | < 1 (otherwise by (2.2.3) || pg/Y® | = & for every ordinal «, that is
K(pg,e) N Y® # @, and by compactness K(¢g,&) NPY # @, which is clearly
impossible). Therefore if R:Cy(X) —» Co(X ~ PX) is the natural restriction
operator, then | Rg| = 1, that is | Rp-'Lf| = | ¢~'Lf]|, but

[T 17l s 1e '] = 7]

whence letting ¢ = R¢~'L, the statement in the lemma now becomes obvious.

(3.3) COROLLARY. Let X, Y, ¢ be as in Lemma (3.2). Then for every ordinal o,
(Y ~ PY)®| £ | X~ PX)®|.

Proor. Consider the isomorphism ¢ of Lemma (3.2) and apply Theorem (2.1).
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It is easy to construct examples of spaces with non empty perfect kernels where
3 is exact, e.g.

(3.4) ExampPLE. X = [0,1], Y=1[0,1) U{2}. Define ¢: C(X) =225 Co(Y) by
(@NQ) = 2f(1)
@NE) = fx)y-f1), O0=x<I.

Clearly ||¢| =2, | ¢~ | = . Also, it follows from Corollary (3.3) that for
every isomorphism y of C(X) onto Co(Y), | v | ” '] =z 3.

REFERENCES

1. D. Amir, On isomorphisms of continuous function spaces, Israel J, Math., 3(1965), 205-210.

2. C. Bessaga and A. Pelczynski, Spaces of continuous functions (IV), Studia Math. 19
(1960), 53-62.

3. M. Cambern, On isomorphisms with small bound, Proc. Amer. Math. Soc. 18 (1967),
1062-1066.

4. M. Cambern, On mappings of sequence spaces, Studia Math 30 (1968), 73-77.

5. M. Cambern, Mappings of continuous function spaces, Notices Amer. Math. Soc. 16
(1969), 317.

6. S. Mazurkiewicz and W. Sierpinski, Contributions ¢ la topologie des ensembles denomb-
rables, Fund. Math, 1 (1920), 17-27.

7. A. A. Miljutin, Isomorphism of spaces of continuous functions on compacts of the power
continuum, Teor. Funk. Funkcional. Analiz i PriloZen. 2 (1966), 150-156 (Russian).

8. A. Pelczynski, Linear extensions, linear averagings and their application to linear topo-
logical classification of spaces of continuous functions, RozpraWy Matematyczne 58, (1968).

TaE HEBREW UNIVERSITY OF JERUSALEM



